NUIG-UNLP at SemEval-2016 Task 1: Soft Alignment and Deep Learning for Semantic Textual Similarity
نویسندگان
چکیده
We present a multi-feature system for computing the semantic similarity between two sentences. We introduce the use of soft alignment for computing text similarity, and also evaluate different methods to produce it. The main features used by our system are based on alignment and Explicit Semantic Analysis. Our system was above the median scores for 4 out of the 5 datasets at SemEval 2016 STS Task 1.
منابع مشابه
FBK-HLT-NLP at SemEval-2016 Task 2: A Multitask, Deep Learning Approach for Interpretable Semantic Textual Similarity
We present the system developed at FBK for the SemEval 2016 Shared Task 2 ”Interpretable Semantic Textual Similarity” as well as the results of the submitted runs. We use a single neural network classification model for predicting the alignment at chunk level, the relation type of the alignment and the similarity scores. Our best run was ranked as first in one the subtracks (i.e. raw input data...
متن کاملRICOH at SemEval-2016 Task 1: IR-based Semantic Textual Similarity Estimation
This paper describes our IR (Information Retrieval) based method for SemEval 2016 task 1, Semantic Textual Similarity (STS). The main feature of our approach is to extend a conventional IR-based scheme by incorporating word alignment information. This enables us to develop a more fine-grained similarity measurement. In the evaluation results, we have seen that the proposed method improves upon ...
متن کاملMayoNLP at SemEval-2016 Task 1: Semantic Textual Similarity based on Lexical Semantic Net and Deep Learning Semantic Model
Given two sentences, participating systems assign a semantic similarity score in the range of 0-5. We applied two different techniques for the task: one is based on lexical semantic net (corresponding to run 1) and the other is based on deep learning semantic model (corresponding to run 2). We also combined these two runs linearly (corresponding to run 3). Our results indicate that the two tech...
متن کاملUTA DLNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation
In this paper, we propose a deep neural network based natural language processing system for semantic textual similarity prediction. We leverage multi-layer bidirectional LSTM to learn sentence representation. After that, we construct matching features followed by Highway Multilayer Perceptron to make predictions. Experimental results demonstrate that this approach can’t get better results on s...
متن کاملDTSim at SemEval-2016 Task 1: Semantic Similarity Model Including Multi-Level Alignment and Vector-Based Compositional Semantics
In this paper we describe our system (DTSim) submitted at SemEval-2016 Task 1: Semantic Textual Similarity (STS Core). We developed Support Vector Regression model with various features including the similarity scores calculated using alignment based methods and semantic composition based methods. The correlations between our system output and the human ratings were above 0.8 in three datasets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016